Local Water Supply and Salinity Impacts

Salinity Seminar
June 18, 2008

Ken Weinberg, Director of Water Resources
Toby Roy, Water Resources Manager
San Diego County Water Authority

Presentation Overview

• Local Water Supply Situation
• What is salinity?
• What is the problem?
• Why is salinity increasing?
• Who is affected and who contributes to the problem?
• What does the future hold?
• What are the potential solutions?
San Diego Region
Water Supply Update

Governor Proclaims
Statewide Drought -
June 4, 2008

• Critically dry conditions in 2007 and 2008
 - Snowpack water content at 67% of normal
 - Runoff forecast at 55% of normal
 - Driest spring on record in northern California
 - Reservoir levels low - Oroville at 50%
• Largest court-ordered delivery restriction in state history
 - Deliveries from Delta - one-third of allocation
 (Drought impacts and Judge Wanger Ruling on Delta Smelt)
State Water Project
Fish Challenges

• Court ruling imposed interim restrictions on SWP pumping to protect Delta smelt (threatened)
 - In CY 2008, 500,000+ AF lost to SWP; another 300,000+ AF loss to CVP to date.
• Potential for additional pumping restrictions
 - Longfin Smelt (designated candidate species)
 • 12-month review starting July 2008.
 - Central Valley Steelhead/Chinook Salmon (w/s)
 • Wanger ruling in April 2008 invalidated Biological Opinion.

Colorado River Hydrologic Conditions

• 2007 was 8th year of historic drought
 - 2003: surplus water no longer available
 - CRA half-full
• 2008 above average
 - 117% of normal snow pack
• Reservoirs are at ~50%
 - 60 MAF
 - Will take many years to refill
San Diego Supply Situation - 2008

- 30% cutbacks to Interim Agricultural Water Customers in 2008
- Region likely to avoid municipal and industrial cutbacks from MWD this year
- The region has entered a multi-year era of:
 - Diminished core imported water supplies
 - Increased reliance on water supply reserves
 - Increased vulnerability to weather changes

What is Salinity?

- Measured as Total Dissolved Solids or Electrical Conductivity
- Ions Dissolved in Water
 - Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Sulfate, Chloride, Nitrate, Bromide
What is the Problem?

- Salt is accumulating in soils
- Salinity is increasing in surface waters
- Salinity is increasing in groundwater
- High salts limit the ability to beneficially use water in the San Diego Region

Why is Salinity Increasing?

- Salinity increases from upstream to downstream due to water diversions, consumptive use, and discharges.
- Salt is exported out of the Sacramento/Bay Delta/Colorado River Basins.
- Changes in our imported water supply mix effect salinity levels.
Who is Affected and Who Contributes to the Problem?

- Residential Users
- Industry
- Agriculture
- Wetlands
- Drinking Water, Wastewater Agencies
Residential Users

• Effects
 - Objectionable taste in drinking water
 - Bottled water or home treatment devices purchased
 - Health impacts - sodium and nitrate
 - Corrosion or build-up in pipes and appliances

• Salt Contributions
 - Water consumption
 - Water softeners and garbage disposals
 - Fertilizers and soil amendments
 - Personal care and cleaning products
 - Salt residuals in irrigated landscapes

Industry

• Effects
 - Increased pretreatment
 - More stringent discharge requirements

• Salt Contributions
 - Discharges to surface waters and groundwaters
 - Brine discharges to sewer system
Agriculture

• Effects
 – Limits crop production
 – Salt tolerant crops
 – Land falling

• Salt Contributions
 – Crops use water and leave salts behind
 – Fertilizers and soil amendments
 – Drainage contains more salt than irrigation water

Wetlands

• Salt Contributions
 – Water evaporates and salts are concentrated
 – High salinity water is discharged to surface waters or groundwater
Drinking Water and Wastewater Agencies

- **Effects**
 - More advanced treatment
 - Limits ability to recycle wastewater and recharge groundwater (increased use and development of groundwater and recycled water supplies key strategies to diversify San Diego’s Water Supply Portfolio)
 - More stringent discharge requirements for wastewater dischargers

- **Salt Contributions**
 - TDS increases by about 300 to 500 mg/L between source water and wastewater

What Does the Future Hold?

- **MORE SALT**
- Increased regulation
- Population Growth
 - More water diversions
 - More discharges

- **Climate Change**
 - Less snow and more rain = more difficulty capturing high quality water for later use
 - More demand for local supplies
What are the Potential Solutions?

- **Short-term**
 - Actions to improve water quality in the Bay/Delta, Colorado river
 - Management practices

- **Long-term**
 - Peripheral canal or other conveyance to improve quality of water pumped from Delta
 - Drain or brine line to the ocean
 - Desalination facilities

Summary

- Large amounts of salt are imported into the San Diego region.
- High salts limit the ability to beneficially use water
- Consumptive use of water increases salinity.
- It is imperative that we develop a salt management plan and address this problem.
- We (individuals, urban, agriculture, industry) are all part of the problem and we must work together to address salinity in the San Diego Region.
Progress May Be Slow But We Don’t Have a “No Action” Alternative